Lake Kinneret

- Latitude: 32°N\Longitude: 35°E
- Altitude: -210 m
- Length: 21 km
- Width: 12 km
- Mean depth: 20 m
- Max depth: 42 m
- Area: 170 km²
- Volume: 4300 x 10⁶ m³
- Jordan R annual inflow: 310 x 10⁶ m³
- Watershed area: 2730 km

Fig. 32.1 Location maps of monitoring stations in Lake Kinneret and its watershed. **a** Lake Kinneret (symbol legend *below* map). **b** Watershed (symbol legend *above* map). Additional explanations: *KLL*—Kinneret Limnological Laboratory. *Other stations*—stations F, M are used for sedimentation flux measurements, J for occasional biological measurements, and *Arik* for pesticides. *Littoral stations*—shallow water stations for occasional biology and chemistry measurements

Observations

Source	Data type	Spatial resolution	Time resolution	Time span
IMS (Israel Meteorological Service)	Air temperature and precipitation	IMS stations	Daily	1950-2024
KLL	Lake Kinneret Temperature, Salinity, Chl, Nutrients, Fluorescence, phytoplankton counts	5 Lake monitoring stations	Weekly	1970-2024
Mekorot & IWA (Israel Water Authority)	Streams temperature, conductivity and chemistry.	Rivers inlets	Weekly	1970-2024
IWA	Stream discharge and Lake level	Rivers inlets	Daily	1970-2024

Monitoring Lake Kinneret for the last 50 years

- Weekly profiles of T, EC, Chl, Oxygen and more
- Anomalies show a warmer and more stratified water column

Lake level

Increasing salinity

Large Cyanobacteria blooms

Microcystis cyanobacteria- Harmful Algal Bloom – February 2023

When Harmful Algel Bloom is seen in the lake it is usually also seen from space

Using an operational physical model, its spread can be predicted

Summary of climate change impact

SJ vs. DT

SJ scenario counteract climate change effects on the lake ecosystem

Results: KSI

- Non of the scenarios can fully mitigate climate change
- Relative to taking no action Scenario SJHW has the best chance of maintaining the ecosystem close to its current state.
- Uncertainty is very high

Kinneret Watershed Model

Soil Water Assessment Tool (SWAT)

A physical, semi-distributed, and continuous watershed-scale model.

נתיבי זרימה באקוויפר

Management issues

- Water level
 - Water quantity
 - Water quality, especially salinity, cyanobacteria
 - Water supply reliability including trans-national
- Recreation
- Fisheries
- Solutions
 - Increased storage
 - Desalinated water
 - Improved watershed management
 - Reduce salt inflow