Managing Events and Extremes in Water Supplies

Sweden representatives meeting

2025-01-04

Outline

- Short overview of results so far
 - Watershed modelling with GWLF
 - Esitmating Nutrient Loads (LoadEst)
 - 3D lake modelling with PyGETM
- Setting up and running PyGETM.
- Discussion on future interactions.

Scenario Modelling framework SD physics, flows Dutputs Models Outputs Outputs

Image: Note: Image: Image:

Catchment model

- Discharge: GWLF
- DOC process based model coupled to GWLF
- Nutrients: LOADESTrelationship
 - Linear relationship between log(Q) and log(loading)
 - Using SMHI discharge measurements and SLU nutrient measurements
 - Challenging, because of complexity and different locations
 - Still work in progress

Watersheds Used for Model Calibration and Simulation

13 Watersheds with Discharge and Water Quality Used for Model Calibration

Major Watersheds That Will be Used to Simulate Lake Input Loading

Watersheds Used for Model Calibration and Simulation

Updated 21 Watersheds with Discharge Used for Model Calibration Major Watersheds That Will be Used to Simulate Lake Input Loading

Calibrations and Simulations Using the GWLF model Progress

- Now have identified 21 basins with measured stream discharge that can be used for calibration of the GWLF. Calibrations are complete.
- Land use areas and SCS curve numbers are now calculated for all gauged watersheds and all the major inputs to Mälaren
- Hydrology simulation run for all gauged basins ISIMIP3a historical period 1961 2019

Calibrations and Simulations Using the GWLF model

Next Steps

- Find best method to transfer calibrated coefficients from gauged basins to major inflows.
- Simulate historical and future climate scenarios for all major watersheds
- Simulate nutrient loads with Hydrology and Load Est
- Simulate DOC loads with process based model.
- What to do about Eskilstunaån?

Corine Land Use

SCS Curve Numbers

Stream Discharge Simulations ISIMIP3a Historical Time Series 13 Original Basins

Variation in Hydrologic Model Parameters

Catchment inflows - nutrients

- GWLF does not simulate nutrients (NO₃, PO₄, etc.)
- Simple extrapolation from observations based on discharge and seasonality (LOADEST)
- Observed continuous time series generated
- Relation can be fitted to future GWLF discharge simulations

DOC Predicted From a Process Based Model

Water Research Available online 1 February 2025, 123238 In Press, Journal Pre-proof ⑦ What's this?

Accounting for model parameter uncertainty provides more robust projections of dissolved organic carbon dynamics to aid drinking water management

 $\frac{\text{Ricardo Paíz} \circ \bigtriangleup \boxtimes}{\text{Mary Dillane}^{f}, \text{Valerie McCarthy}^{g}, \text{Suzanne Linnane}^{\circ}, \text{Eleanor Jennings}^{\alpha}}$

https://doi.org/10.1016/j.watres.2025.123238

Three-dimensional physics

• PyGETM

- Spatially-varying weather forcing
- Takes long time to run (1 year ≈ 16 hours runtime).
 - Ekoln-only setup 1 year in about 1.5 hours

15

Pygetmtools

- <u>https://github.com/jorritmesman/pygetmtools</u>
- R package for post-processing of the PyGETM outputs
- Work in progress
- Reading from netcdf into R (and write to csv)
- Extraction from:
 - Top-view
 - Transect
 - Single location (depth profile or single point)
- Some plotting functionality

Idea for additional functionality

- A "Tracers" folder in the model setup
 - Addition of time series for tracer release
- Setup functionality to convert inputs from csv to PyGETM-inputs
 - Perhaps even a simple graphical user interface (applying for funding)
- Pygetmtools functions to plot tracer spread

cuments > Projects > 2024 > MEWS > github > mews > malaren > V 🖸			Search malaren	۶
Name	Date modified	Туре	Size	
Bathymetry	2024-12-09 13:06	File folder		
🛃 Ekoln	2025-01-29 16:13	File folder		
S ERA5	2024-12-09 13:06	File folder		
Rivers	2024-12-09 13:06	File folder		
Tracers	2025-01-30 11:53	File folder		
🦻 .gitignore	2024-06-17 14:55	Text Document	1 KB	
📝 fabm-selma.yaml	2024-06-20 14:41	YAML File	10 KB	
🙋 meteo.nc	2024-08-09 14:40	NC File	5,381 KB	
🚰 run.py	2025-01-30 09:43	PY File	2 KB	
🔗 run_malaren.py	2025-01-30 09:37	PY File	13 KB	

Next steps for lake modelling

- Processing Mälaren SLU observations
 - Comparatively easy process same format at catchment inflows
- Model validation and eventually calibration
- 1D calibration and 3D application
- More data:
 - Mention of some velocity profiles?
 - Satellite data (Lakes CCI dataset)

18